A review and comparative study on functional time series techniques
نویسنده
چکیده
This paper reviews the main estimation and prediction results derived in the context of functional time series, when Hilbert and Banach spaces are considered, specially, in the context of autoregressive processes of order one (ARH(1) and ARB(1) processes, for H and B being a Hilbert and Banach space, respectively). Particularly, we pay attention to the estimation and prediction results, and statistical tests, derived in both parametric and non-parametric frameworks. A comparative study between different ARH(1) prediction approaches is developed in the simulation study undertaken.
منابع مشابه
On the Detection of Trends in Time Series of Functional Data
A sequence of functions (curves) collected over time is called a functional time series. Functional time series analysis is one of the popular research areas in which statistics from such data are frequently observed. The main purpose of the functional time series is to predict and describe random mechanisms that resulted in generating the data. To do so, it is needed to decompose functional ti...
متن کاملAn Empirical Comparison of Distance Measures for Multivariate Time Series Clustering
Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...
متن کاملMissing data imputation in multivariable time series data
Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...
متن کاملComparative Study Among Different Time Series Models for Monthly Rainfall Forecasting in Shiraz Synoptic Station, Iran
In this research, monthly rainfall of Shiraz synoptic station from March 1971 to February 2016 was studied using different time series models by ITSM Software. Results showed that the ARMA (1,12) model based on Hannan-Rissanen method was the best model which fitted to the data. Then, to assess the verification and accuracy of the model, the monthly rainfall for 60 months (from March 2011 to Feb...
متن کاملA Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach
In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...
متن کامل